## SHAN <br> PRECAST SOLUTIONS



## Concrete Pipe

PRODUCT GUIDE \& TECHNICAL REFERENCE MANUAL

Providing the right solutions.


During the last decade, owners and engineers have become very conscious about design flows, infiltration and economy of buried pipeline systems with performance being the main consideration. In this respect one should pay meticulous attention to manufacturers' qualifications since the quality and dimensional accuracy of pipe are entirely dependent upon the manufacturer's equipment and quality control.

SHAW PRECAST SOLUTIONS manufactures pretested sanitary sewer pipe for use with a confined gasket to keep sewage waste inside and ground water outside. Each section of pipe must pass all of our quality control tests before it is certified to leave the plant. Our "TESTED" stamp assures you that section of pipe has qualified and passed our rigorous tests.

SHAW PRECAST SOLUTIONS manufactures culvert and storm sewer pipe for clear water drainage. Gaskets are commonly used on the joints but this pipe has not undergone the rigorous hydrostatic testing performed on the pretested sanitary pipe.


FITTINGS - TEES / WYES AND PIPE BENDS
FITINGS - TEES (90) AND WYES (45)
$300 \varnothing_{\text {to } 3000} \boldsymbol{\theta}^{*}$
*PIPE DIAMETERS \& ANGLES AS SPECIFIED BY CONSULTANT.

## Curved Pipe Alignment

Changes in direction or grade of sewer lines or culverts can be accomplished by laying pipe on a curved alignment. Curved alignments can be accommodated in two ways, by deflecting straight pipe sections at each joint, or using specially manufactured radius pipe.

## DEFLECTED STRAIGHT PIPE

In a straight pipeline alignment, the distance between adjacent sections of pipe is essentially uniform around the circumference of the joint. Gradual curved alignment can be accommodated by opening up the joint on one side by a specified amount to achieve the required radius of curvature. To maintain a watertight joint using a rubber gasket joint, ASTM C-443 recommends that the maximum opening (or pull) be 13 mm . In installations where watertight integrity is not a concern, the maximum pull is limited by the joint dimensions of the pipe.

The following chart provides the minimum radius possible which can be achieved using Shaw Precast Solutions standard pipe, and using a maximum pull of 13 mm at each joint.

| CURVED PIPE SIZES |  |  |
| :---: | :---: | :---: |
| Nominal Pipe | Radius of Curvature |  |
| Size (mm) | $\mathbf{( m )}$ | (ft) |
| 300 mm | 80 m | 262.4 ft |
| 375 mm | 97.5 m | 319.9 ft |
| 450 mm | 115 m | 377.3 ft |
| 525 mm | 132.5 m | 434.7 ft |
| 600 mm | 150 m | 492.1 ft |
| 750 mm | 185 m | 607.0 ft |
| 900 mm | 227.5 m | 746.4 ft |
| 1050 mm | 255.0 m | 836.6 ft |
| 1200 mm | 290.0 m | 951.5 ft |
| 1350 mm | 325.0 m | 1066.3 ft |
| 1500 mm | 360.0 m | 1181.2 ft |
| 1800 mm | 437.5 m | 1435.4 ft |
| 2100 mm | 507.5 m | 1665.1 ft |
| 2400 mm | 570.0 m | 1870.2 ft |
| 3000 mm | 702.3 m | 2304.0 ft |
| 3600 mm | 861.6 m | 2826.8 ft |



## Radius Pipe

Radius pipe, also referred to as beveled or mitered pipe, is used to construct pipelines which require a short radius of curvature. The pipe is manufactured by dropping the spigot ring on one side, resulting in one side of the pipe being longer than the other. The deflection angle is accommodated at the joint. The maximum angular deflection obtainable is governed by the joint configuration and the method of manufacture. Shaw Precast Solutions manufactures radius pipe for nominal pipe sizes from $1350 ø \mathrm{~mm}$ to $2400 ø \mathrm{~mm}$.

The following table provides the minimum radius obtainable for all pipe sizes, using a maximum drop of 150 mm . Where the maximum drop will vary for each size of pipe manufactured, we recommend that designers consult with our staff to determine the suitability of radius pipe for the required curvature. Where a shorter radius of curvature is required, bends with a minimum 10 degree angle should be substituted.

| RADIUS PIPE SIZES |  |  |
| :---: | :---: | :---: |
| Nominal Pipe | Radius of Curvature |  |
| Size (mm) | $\mathbf{( m )}$ | $(\mathrm{ft})$ |
| 1350 mm | 26.3 m | 86.2 ft |
| 1500 mm | 29.1 m | 95.4 ft |
| 1800 mm | 35.3 m | 116.0 ft |
| 2100 mm | 41.0 m | 134.5 ft |
| 2400 mm | 46.1 m | 151.1 ft |
| 3000 mm | 56.7 m | 186.0 ft |
| 3600 mm | 71.6 m | 234.9 ft |

## CONCRETE PIPE FOR JACKING

The jacking method of installing concrete pipe is now well established. It has obvious advantages in areas where it is impossible or undesirable to disturb the overlying surface. Design information and case histories of this method are readily available.

Practical working space limitations require the use of at least 900 mm diameter pipe. It is preferable to use pipe with no increase in outside diameter at the bell, in order to reduce problems with grade alignment.

The cross sectional area of all "B-wall" pipe is more than adequate to resist axial loading due to normal jacking pressures. For unusually high jacking pressures or excessive unit frictional forces, higher concrete compressive strengths can be specified, typically up to 41 MPa ( 6000 psi ).
Designers should consult with our engineering staff if higher compressive strengths are required.

It is extremely important to prevent localized stress concentrations by maintaining uniform distribution of the axial load around the circumference of the pipe wall and ensuring the ends of the pipe are aligned with the tunnel axis. It is also important that the pipe being used meets the dimensional tolerances of the specified standards, to ensure that the ends of the pipe are square to the tunnel axis. A cushioning material should be used at the pipe joints to properly distribute the jacking force through the jacking frame to the pipe.

Further information on concrete pipe for jacking is available from our design staff.


CIRCULAR HALF PIPE AND PERFORATED PIPE

## CIRCULAR HALF PIPE



PERFORATED PIPE (Available in all pipe sizes)


## FISH \& FLOW DISSIPATION WEIRS

 INSTALLED IN CIRCULAR PIPE SECTIONS
## PLAN VIEW AT CENTRE LINE OF PIPE

Weir dimensions to suit project
specifications.
LONGITUDINAL SECTION AT CENTRE LINE OF PIPE
in circular pipe sections from
900mm to 3600mm dia.
Fish weirs can also be installed in channel
half pipe sections, box culvert, and flat
bottom pipe sections.

FISH \& FLOW DISSIPATION WEIRS TYPICAL DIMENSIONS


FISH \& FLOW DISSIPATION WEIRS TYPICAL DIMENSIONS


FISH \& FLOW DISSIPATION WEIRS TYPICAL DIMENSIONS






